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Abstract

This paper studies the design of optimal time-consistent monetary policy in

an economy where the planner and a representative household are faced with

model uncertainty: While they are able to construct and agree on a reference

model (probability distribution) governing the evolution of the exogenous state

of the economy, a representative household has fragile beliefs and is averse to

model uncertainty. In such environments, management of households’ inflation

expectations becomes an active channel of optimal policymaking per se. A central

banker who respects the fact that private sector models are imperfect and designs

her optimal policy accordingly may be able not only to mitigate a fundamental

time-inconsistency problem but also to sustain higher welfare. Interestingly, in

some cases the resulting welfare is even higher than in models where both a central
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banker and a representative household are assumed to know the true model, i.e.,

to have rational expectations.

Keywords: monetary policy, management of inflation expectations, credibility, time

consistency, model uncertainty, robust control.
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1 Introduction

The idea that monetary policy is primarily about “managing expectations” is well

accepted amongst the central bankers around the world and monetary policy theorists

alike. Indeed, many leading monetary economists see the management of expectations

as the task for monetary policy. For Svensson (2004), “Monetary policy is to a large

extent the management of expectations,” while according to Woodford (2005), “Not only

do expectations about policy matter, but, at least under current conditions, very little

else matters.” But what do we mean precisely by the “management of expectations?”

And what is the right framework to analyze this concept?1 Sargent (2022) suggests

that “To make progress on this topic requires a setting in which, first, private agents

and the government have different beliefs, and second, the government has a model of

how its actions affect private agents beliefs, and third, discrepancies of beliefs between

government and private agents can be rationalized. Filling all three of these requirements

simultaneously is a tall order.” Doing so is the contribution of this paper.

Under rational expectations (a common beliefs framework), a government strategy

plays two roles, as noted by Sargent (2008).2 First, it is the actual policy rule, say

setting the policy interest rate. Second, it is a system of private expectations about

that very policy. The theory is silent about who chooses that equilibrium system of

private-sector beliefs. Instead, the theory is about how – confronted with a given system

of expectations – the policymaker “chooses” to confirm them.

1These questions are subject of Bernanke (2007). In particular, the author notes that “The tradi-

tional rational-expectations model of inflation and inflation expectations has been a useful workhorse

for thinking about issues of credibility and institutional design, but, to my mind, it is less helpful for

thinking about economies in which (1) the structure of the economy is constantly evolving in ways

that are imperfectly understood by both the public and policymakers and (2) the policymakers’ objective

function is not fully known by private agents. In particular, together with the assumption that the

central bank’s objective function is fixed and known to the public, the traditional rational-expectations

approach implies that the public has firm knowledge of the long-run equilibrium inflation rate; conse-

quently, their long-run inflation expectations do not vary over time in response to new information.”

After eight years of serving as the Chairman of the Federal Reserve System, Bernanke (2015) wrote

on his blog “When I was at the Federal Reserve, I occasionally observed that monetary policy is 98

percent talk and only 2 percent action.”
2Throughout this paper I use the terms “policymaker,” “government,” “planner,” and “central

banker” interchangeably to refer to the agent responsible for the setting of the optimal monetary

policy in the model economy.
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One way to abstract from the rational expectations paradigm and the common

beliefs assumption is through the assumption of incomplete information, where the

policymaker and the public have access to potentially different information (Cukierman

and Meltzer (1986), Cogley, Matthes, and Sbordone (2015), Lorenzoni (2010)). In this

strand of literature, it is typically still true that both the private agents and the planner

have unique but not common priors or systems of beliefs. Then, depending on the

information (e.g., public signals) that the government chooses to communicate to the

agents she can affect how quickly the agents are learning, and, in that sense, at least

in the short run, affect their beliefs.

Yet another way to think about why private agents’ and government beliefs might

differ is as a result of model uncertainty: While both the public and the planner might

have access to the same information, they may entertain alternative probability distri-

butions as candidate data generating processes. As this paper demonstrates, in such a

framework the central bank’s management of private beliefs becomes an integral part

of the theory of optimal conduct of monetary policy.

In the model economy, constructed in the tradition of monetary models by Calvo

(1978) and Chang (1998), a representative household derives utility from consumption

and real money holdings. The government uses the newly printed money to finance

transfers or taxes to households. Taxes and transfers are distortionary. The only

source of uncertainty in this economy is a shock that affects the degree of tax distortions

through its influence on households’ income.

At the heart of this paper lies the assumption that the government has a single

reference model that describes the evolution of the underlying fundamental shock while

a representative household has beliefs which are fragile: She fears that this reference

model might be misspecified. As in Hansen and Sargent (2008), to confront this con-

cern, the representative household contemplates a set of nearby probability distributions

(models) and seeks decision rules that would work well across these models. The house-

hold assesses the performance of a given decision rule by computing the expected utility

under the worst-case distribution within the set. This worst-case distribution can be

seen as the outcome that follows from twisting the probabilities under the reference

model with adequate (endogenous) probability distortions.

As for the second part of Sargent (2022)’s “tall order” above, in the model, the

government recognizes that households are not able or willing to assign a unique prob-
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ability distribution to alternative realizations of the stochastic state of the economy.

The government wants to design optimal monetary policy that explicitly accounts for

the fact that households’ allocation rules are influenced by how they form their beliefs

in light of model uncertainty.

I characterize optimal policy under two timing protocols for the government’s choices.

First, I work under the assumption that at time zero the government can commit to a

policy specifying its actions for all current and future dates and states of nature. Under

this assumption, at time zero a government chooses the best competitive equilibrium

from the set of competitive equilibria with model uncertainty, i.e. one that maximizes

the households’ expected lifetime utility but under the government’s own unique beliefs.

I will refer to such a government as paternalistic Ramsey planner.

The competitive equilibrium conditions in this model are represented by the house-

holds’ Euler equations and an exponential twisting formula for the probability distor-

tions (in a representative agent’s beliefs with respect to planner’s beliefs). Using insights

from Kydland and Prescott (1980), I express the competitive equilibria in a recursive

structure by introducing an adequate pair of state variables. I first need to keep track

of the equilibrium (adjusted) marginal utilities to guarantee that the Euler equations

are satisfied after each history. The second state variable is the households’ lifetime

utility. This variable is needed to express the equilibrium probability distortions in the

context of model uncertainty. These two variables summarize all the relevant infor-

mation about future policies and allocations for households’ decisionmaking when the

government has the ability to commit. Through the dynamics of the promised marginal

utility and households’ value (lifetime utility), which the government has to deliver in

equilibrium, the solution to the government’s problem under commitment, the Ramsey

plan, exhibits history dependence.

Once I relax the assumption that the government has the power to commit but

instead chooses sequentially, a time inconsistency problem may arise, as first noted

by Kydland and Prescott (1977) and Calvo (1978). The government will adhere to a

plan only if it is in its own interest to do so. As a consequence, it is urgent to check

whether the optimal policies derived by the paternalistic Ramsey planner are time

consistent, and, more generally, to characterize the set of sustainable plans with model

uncertainty.3 This latter notion should be thought of as an extension of Chari and

3The notion of a sustainable plan inherits sequential rationality on the government’s side, jointly
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Kehoe (1990). Using the government’s value as an additional third state variable, an

appropriate incentive constraint for the government can then be constructed to complete

the formulation of a sustainable plan in a recursive way. This introduces a new source of

history-dependence given by the restrictions that the system of households’ expectations

impose on the government’s policy actions in equilibrium.

To my knowledge, this paper constitutes the first attempt to characterize the set

of all time-consistent outcomes when private agents are faced with model uncertainty

and their beliefs are endogenously distorted with respect to the planner’s beliefs. The

fact that the extent to which a representative household’s beliefs are misspecified with

respect to planner’s beliefs is determined endogenously in equilibrium speaks to the

third element of the Sargent (2022)’s “tall order”: Because private agents choose policies

that are best responses to their worst-case model (rather than the shared reference

model) – which is an object that is affected by the planners policy (whether Ramsey or

as part of a sustainable plan, defined below) – the planner is thrust into manipulating

private agents beliefs and the theory of rationalizing discrepancies in beliefs between

private agents and a planner becomes an integral part of a theory of the management

of expectations.

Characterizing time-consistent outcomes is a challenging task because any time-

consistent solution must include a description of government and market behavior such

that the continuation of such behavior after any history is a competitive equilibrium

and it is optimal for the government to follow that policy. In this paper, I use insights

from the work by Abreu, Pearce, and Stacchetti (1990), Chang (1998), and Phelan

and Stacchetti (2001) to compute the sets of equilibrium payoffs as the largest fixed

point of an appropriate operator. Previously, numerical examples in Orlik and Presno

(2013) suggested that government policies that account for the fact that households

contemplate a set of probability distributions may lead to better outcomes. Here, (1)

I clarify the conditions under which these numerical solutions are valid; (2) I show

analytically why Ramsey planner in an economy with uncertainty-averse representative

household obtains higher welfare (Theorem 1); (3) I solve a simplified three-period

version of the model to explain why aversion towards model uncertainty on the side

of households can help the government mitigate the time-consistency problem; (4) and

with the fact that households always respond to government actions by choosing from competitive

equilibrium allocations.
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I present an extension of the baseline model with two-sided model uncertainty and

conjecture mechanisms at play and conditions under which the same qualitative results

obtain.

Although in this paper I restrict attention to the type of models of monetary policy-

making that can be cast in the spirit of Calvo (1978), the approach could be applicable

to many repeated or dynamic games between a government and a representative house-

hold who distrusts the model used by the government.

To my knowledge, there is only a handful of papers that try to explore the poli-

cymaker’s role in managing households’ expectations in the presence of model uncer-

tainty. Karantounias (2013) studies the optimal fiscal policy problem in Lucas and

Stokey (1983) but in an environment where a representative household distrusts the

model governing the evolution of exogenous government expenditures. Karantounias

(2013) applies the techniques of Marcet and Marimon (2009) to characterize the op-

timal policies when the government has power to commit. Woodford (2010) discusses

the optimal monetary policy under commitment in an economy where both the govern-

ment and the private sector fully trust their own models, but the government distrusts

its knowledge of the private sector’s beliefs about prices. Adam and Woodford (2021)

analyze optimal monetary policy in a New Keynesian model with housing: When the

policymaker is concerned with potential departures of private sector expectations from

rational ones and seeks a policy that is robust against such possible departures, then

the optimal target criterion must also depend on housing prices.

This paper is also related to the literature which demonstrates that beliefs of various

agents may be inconsistent with the assumption of unique probability distributions.

The fact that private agents seem unable to assign a unique probability distribution to

alternative outcomes has been demonstrated in a seminal work of Ellsberg (1961) and

similar experimental studies, e.g. Halevy (2007). A lack of confidence in the singular

models seems to have become apparent during the recent financial crisis (Caballero

and Krishnamurthy (2008), Uhlig (2010), Boyarchenko (2012)). Bhandari, Borovička,

and Ho (2022) argue that households’ inflation and unemployment forecasts in the

Michigan Survey can be well explained assuming households are endowed with a version

of multiplier preferences I consider here.

This paper is also related to game-theoretical studies which analyze comparative

statics with respect to players’ risk aversion or ambiguity aversion. In Battigalli et al.
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(2016) higher ambiguity aversion is shown to expand the set of justifiable actions (i.e.,

best-reply actions to some belief over probabilistic models). Under ambiguity neutral-

ity, higher risk aversion expands the set of justifiable actions. Similarly, for subjective

expected utility maximizers in finite games, Weinstein (2016) shows that the rationaliz-

able set grows with increased risk aversion. While these papers study the consequences

of increased risk aversion and / or ambiguity aversion in the space of players’ actions,

in this paper I focus on the resulting lifetime utility values which can be sustained when

agents are ambiguity averse.

The remainder of this paper is organized as follows. Section 2 sets up the model

and outlines the assumptions made. Section 3 introduces the notion of competitive

equilibrium with model uncertainty. Section 4 discusses the recursive formulation of

the Ramsey problem for the paternalistic government. Section 5 contains the discussion

of sustainable plans with model uncertainty. Section 6 solves a simplified three-period

version of the model that sheds light on the main mechanism by which aversion to

model uncertainty on the side of households may substitute for the lack of government

commitment. Section 7 briefly discusses an extension of the model with both the

government and households averse to model uncertainty. Finally, Section 8 concludes.

2 Benchmark Model

The model economy is populated by two infinitely lived agents: a representative house-

hold (with her alter ego, which represents her concerns about model misspecification)

and a government. The household and the government interact with each other at

discrete dates indexed as t = 0, 1, ....

At the beginning of each period, the economy is hit by an exogenous shock. The

government in the model has a reference or approximating probability model for this

shock, which is its best estimate of the economic dynamics.4 While the government

fully trusts the probability distribution for the shock, the representative household

fears that it is misspecified. In turn, she contemplates a set of alternative probability

distributions to be endogenously determined, and seeks decision rules that perform well

over this set of distributions. Given her fragile beliefs - doubts regarding which model

4Throughout the paper, I use the terms “probability model” and “probability distribution” inter-

changeably.
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actually governs the evolution of the shock - the household designs decision rules that

guarantee lower bounds on expected utility level under any of the distributions.

Let (Ω,F ,Pr) be the underlying probability space. Let the exogenous shock be

given by st, where s0 ∈ S is given (there is no uncertainty at time 0) and st : Ω→ S for

all t > 0. The set S for the shock is assumed to be finite with cardinality S. I assume

that st follows a Markov process for all t > 0, with transition probabilities given by

π (st+1|st).
Throughout this paper I will refer to the conditional distribution π (st+1|st) as the

reference model. Let st ≡ (s0, s1, ..., st) ∈ S × S × ... × S ≡ St+1 be the history of the

realizations of the shock up to t. Finally, I denote by St ≡ F (st) the sigma-algebra

generated by the history st.

2.1 The Representative Household’s Problem and Fears about

Model Misspecification

The households in this economy derive utility from consumption of a single good, c(st),

and real money balances, m(st). The household’s period payoff is given by u (ct (st)) +

v(mt (st)), where the utility components u and v satisfy the following assumptions:

[A1] u : R+ → R is twice continuously differentiable, strictly increasing, and

strictly concave

[A2] v : R+ → R is twice continuously differentiable, and strictly concave

[A3] limc→0 u
′ (c) = limm→0 v

′ (m) = +∞

[A4] ∃m < +∞ such that v′ (m) = 0.

The assumptions [A1]-[A3] are standard. Assumption [A4] defines a satiation level for

real money balances.

In this paper, I model the representative household as being uncertainty-averse.

While the government fully trusts the reference model π (st), the household distrusts it.

For this reason, she surrounds it with a set of alternative distributions π̃ (st) that are

statistical perturbations of the reference model, and seeks decision rules that perform

well across these alternative distributions. I assume that these alternative distributions,
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π̃ (st), are absolutely continuous with respect to π (st), i.e. π (st) = 0 ⇒ π̃ (st) = 0,

∀st ∈ St+1.

By invoking the Radon-Nikodym theorem I can express any of these alternative

distorted distributions using a nonnegative St-measurable function given by

Dt

(
st
)

=


π̃(st)
π(st)

ifπ (st) > 0

1 ifπ (st) = 0,

which is a martingale with respect to π (st), i.e.
∑
st+1

π (st+1|st)Dt+1 (st+1) = Dt (st).

I can also define the conditional likelihood ratio as dt+1 (st+1|st) ≡
Dt+1(st,st+1)

Dt(st)
for

Dt (st) > 0. Notice that in case Dt (st) > 0 it follows that

dt+1

(
st+1|st

)
=


π̃(st+1|st)
π(st+1|st) if π (st+1) > 0

1 if π (st+1) = 0,

and that the expectation of the conditional likelihood ratio under the reference model

is always equal to 1, i.e.
∑
st+1

π (st+1|st) dt+1(st+1|st) = 1.

To express the concerns about model misspecification, I follow Hansen and Sargent

(2008) and endow the household with multiplier preferences. In this case, the set of

alternative distributions over which the household evaluates the expected utility of a

given decision rule is given by an entropy ball. I can then think of the household as

playing a zero-sum game against her alter ego, who is a fictitious agent that represents

her fears about model misspecification. The alter ego will be distorting the expectations

of continuation outcomes in order to minimize the household’s lifetime utility. She will

do so by selecting a worst-case distorted model π̃ (st), or equivalently, a sequence of

probability distortions {Dt (st) , dt+1 (st+1|st)}∞t=0.

The representative household ranks contingent plans for consumption and money

balances according to

V H = max
{ct(st),mt(st)}

min
{Dt(st),dt+1(st+1)}

∞∑
t=0

βt
∑
st

π(st)Dt(s
t)
{[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]

+θβ
∑
st+1

π(st+1|st)dt+1(st+1|st) log dt+1(st+1|st)
}

(1)

Dt+1(st+1) = dt+1(st+1|st)Dt(s
t) (2)∑

st+1

π(st+1|st)dt+1(st+1|st) = 1, (3)
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where mt ≡ qtMt is the real money balances, Mt is the money holdings at the end

of period t, qt is the value of money in terms of the consumption good (that is, the

reciprocal of the price level), and θ ∈ (θ,+∞] is a penalty parameter that controls the

degree of concern about model misspecification. Through the last term, the entropy

term, the alter ego is being penalized whenever she selects a distorted model that differs

from the approximating one. Note that the higher the value of θ, the more the alter ego

is being punished. Allowing θ → +∞, the probability distortions to the approximating

model vanish, the household and the government share the same beliefs, and expression

(1) collapses to the standard expected utility.

Conditions (2) and (3) discipline the choices of the evil alter ego. Condition (2)

defines recursively the likelihood ratio Dt. Condition (3) guarantees that every distorted

probability is a well-defined probability measure.

The minimization problem yields lower bounds (in terms of expected utility) on

the performance of any of the household’s decision rules. The probability distortion

d(st+1|st) that solves this minimization problem satisfies the following exponential twist-

ing formula

d(st+1|st) =
exp

(
−V H(st+1)

θ

)
∑

st+1∈S π(st+1|st) exp
(
−V H(st+1)

θ

)
,

(4)

where V H(st+1) is the t+ 1−equilibrium value for the household. Condition (4) shows

how the alter ego pessimistically twists the household’s beliefs by assigning high prob-

ability distortions to the states st+1 associated with low utility for the household, and

low probability distortions to the high-utility states. See the Appendix A.1 for the

derivation of condition (4). Notice from (4) that to express the optimal belief distor-

tions, one needs to know the household’s equilibrium values. Using expression (4) the

expected lifetime utility of the household at time t, in equilibrium, is

V (st) = u(c(st)) + v(m(st))− βθ log
∑
st+1∈S

π(st+1|st)
(

exp

(
−V

H(st+1)

θ

))
.

The representative household takes sequences of prices, {qt (st)}∞t=0, income, {yt (st)}∞t=0,

taxes or subsidies, {xt (st)}∞t=0, and the conditional likelihood ratio, {dt+1 (st+1|st)}∞t=0,

as well as the initial money supply M−1, shock realization s0 and D0 = 1, as given.
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The household then maximizes (1) subject to the following constraints

qt
(
st
)
Mt

(
st
)
≤ yt

(
st
)
− xt

(
st
)
− ct

(
st
)

+ qt
(
st
)
Mt−1(st−1) (5)

qt
(
st
)
Mt

(
st
)
≤ m. (6)

Condition (5) represents the household’s budget constraint, which states that for all

t ≥ 0 and all st after-tax income in period t, yt − xt, together with the value of money

holdings carried from last period, must be sufficient to cover the period-t expenditures

on consumption and new purchases of money. Condition (6) is introduced for technical

reasons, in order to bound real money balances from above (so that the optimum

quantity of money in this economy be well defined, as in Calvo (1978)).

2.2 Government

In this economy the government chooses how much money, Mt(s
t) to create or to

withdraw from circulation. In particular, it chooses a sequence {ht}∞t=0 where ht is the

reciprocal of the gross rate of money growth for all t ≥ 0, i.e. ht ≡ Mt−1

Mt
. I make the

following assumption on the set of values for the inverse money growth rate,

[A5] ht(s
t) ∈ Π ≡ [π, π] with 0 < π < 1 < 1

β
≤ π.

[A5] establishes ad hoc bounds on the admissible rates for money creation. A positive

lower bound implies that the supply of money has to be positive. The upper bound is

set for technical reasons.

The government runs a balanced budget by printing money to finance the transfers

to households or destroying the money it collects in the form of tax revenues, xt,

xt(s
t) = qt(s

t)
[
Mt−1

(
st−1

)
−Mt(s

t)
]
. (7)

Using the definition of mt and ht, (7) can be reformulated as

xt(s
t) = mt(s

t)
[
ht(s

t)− 1
]
. (8)

Notice that from equation (8) xt(s
t) ∈ X ≡ [(π − 1)m, (π − 1)m] .

As in Chang (1998), I assume that taxes and subsidies are distortionary. To model

that, I consider an ad hoc functional form for households’ income, f : X × S → R,

that depends on tax collections in period t and the exogenous shock, st, i.e. yt(s
t) ≡

10



f(xt(s
t), st).

5 The function f : X× S→ R is assumed to be at least twice continuously

differentiable with respect to its first argument and

[A6] f(x, s) > 0, f1(0, s) = 0, f11(x, s) < 0 for all x ∈ X, for all s ∈ S

[A7] f(x, s) = f(−x, s) > 0 for all x ∈ X, for all s ∈ S ,

where f1 and f11 denote, respectively, the first and second derivative of function f with

respect to its first argument. Function f is intended to convey that taxes (and transfers)

are distortionary without the need to model the nature of such distortions explicitly.

[A6] indicates that income is always positive and that it is increasingly costly in terms of

consumption to set taxes or to make transfers to households. This assumption will play

a key role in the time-inconsistent nature of the Ramsey plan, when the government

can commit to its announced policies. The symmetry of f given by [A7] implies that

taxes and subsidies are equally distortionary, for simplicity.

2.3 The Within-Period Timing Protocol

The timing protocol within each period is as follows. First, the shock realization,

st(s
t−1), occurs. Then, the government observes the shock, chooses the money supply

growth rate ht(s
t) and taxes xt(s

t) for the period, and announces a sequence of future

money growth rates and tax collections {ht+1(st+1), xt+1(st+1)}∞t=0. After that, given

prices qt(s
t−1), the current policy actions (ht(s

t), xt(s
t)) and their expectations of future

policies, the household chooses Mt(s
t−1), or equivalently real balances mt(s

t). When

making her choice ofmt(s
t), the household can be thought of as playing a zero-sum game

against her alter ego, who distorts her beliefs’ about the evolution of future shock re-

alizations.6 Then taxes are collected and output is realized, yt(s
t) = f(st(s

t−1), xt(s
t)).

Finally, consumption ct(s
t) takes place.

5The formulation of the f function can be thought of as reflecting the ad hoc tax collection costs

in Barro (1979). The shock s may shift the income level irrespective of the tax x. In addition, it may

affect how much output falls when the government levies a given tax x. In this case, one can think of

the shock as altering the implied deadweight loss associated with a tax x or how distortionary a tax x

is in the economy. Paczos and Shakhnov (2018) show that a volatile tax wedge can be microfounded

in different ways, for instance, in a model with endogenous labor supply and labor income tax.
6Since the game between the household and her alter ego is zero sum, the timing protocol between

their moves do not affect the solution.
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In the model economy, the government would want to promote utility by increasing

the real money holdings towards the satiation level. In equilibrium, however, this can

only be achieved by reducing the money supply over time, which in turn induces a grad-

ual deflationary process along the way. In order to balance its budget the government

has to set positive taxes withdrawing money from circulation. Taxes are assumed to be

distortionary, and, hence, this has negative effects on households’ income.

In this simple framework, as discussed by Calvo (1978) and Chang (1998), the

optimal policies for the Ramsey government with the ability to commit would typically

be time-inconsistent. A discussion of the source of the time-inconsistency of the Ramsey

plan is presented in section 4.

3 Competitive Equilibrium with Model Uncertainty

In this section I define and characterize a competitive equilibrium with model uncer-

tainty in this economy. Throughout the rest of the paper bold letters will be used to

denote state-contingent sequences.

Definition 3.1. A government policy in this economy is given by sequences of (inverse)

money growth rates h = {ht(st)}∞t=0 and tax collections x = {xt(st)}∞t=0. A price system

is q = {qt(st)}∞t=0. An allocation is given by a triple of nonnegative sequences of con-

sumption, real balances and income, (c,m,y), where c = {ct(st)}∞t=0, m = {mt(s
t)}∞t=0,

and y = {yt(st)}∞t=0.

Definition 3.2. Given M−1, s0, a competitive equilibrium with model uncertainty is

given by an allocation (c,m,y), a price system q, belief distortions d, and a sequence

of households’ utility values VH = {V H
t+1}∞t=0 such that for all t and all st

(i) given q, beliefs’ distortions d, and government’s policies h and x,
(
m,VH

)
solves

households’ maximization problem;

(ii) given q and
(
m,x,h,VH

)
, d solves the minimization problem;

(iii) government’s budget constraint holds;

(iv) money and consumption good markets clear, i.e. ct(s
t) = yt(s

t) and mt(s
t) =

qt(s
t)Mt(s

t).
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Under assumptions [A1-A6] I can prove the following proposition:

Proposition 1. A competitive equilibrium is completely characterized by sequences(
m,x,h,d,VH

)
such that for all t and all st, mt (st) ∈ M, xt (st) ∈ X, ht (st) ∈ Π,

dt+1 (st+1) ∈ D ⊆ RS
+, and V H

t+1(st+1) ∈ V and

mt

(
st
) {
u′(f(xt

(
st
)
, st))− v′(mt

(
st
)
)
}

=

β
∑
st+1

π(st+1|st)dt+1(st+1|st)
{
u′(f(xt+1

(
st+1

)
, st+1)ht+1

(
st+1

)
mt+1

(
st+1

)}
, ≤ if mt = m

(9)

dt+1(st+1|st) =

exp

(
−V H

t+1(st+1)
θ

)
∑

st+1
π(st+1|st) exp

(
−V H

t+1(st+1)

θ

) (10)

V H
t = u

(
f(xt

(
st
)
, st)

)
+ v

(
mt

(
st
))
− βθ log

∑
st+1

π (st+1|st) exp

(
−V H

t+1

(
st+1

)
θ

)
(11)

−xt
(
st
)

= mt

(
st
) (

1− ht
(
st
))
. (12)

Proof. See Appendix A.1.

Equation (9) is an Euler equation for real money balances. Equation (10) is simply

the exponential twisting formula for optimal probability distortions, rewritten from (4).

Equation (11), as in (2.1), expresses the household’s utility values recursively once the

probability distortions chosen by the evil alter ego are incorporated. Finally, equation

(12) is the government’s balanced budget constraint.

Note that households’ transversality condition is not included in the list of conditions

characterizing competitive equilibrium. Appendix A.1 explains why this is the case.

Formally, let E ≡ M × X × Π × D × V and E∞ ≡ M∞ × X∞ × Π∞ × D∞ × V∞. I

define a set of competitive equilibria for each possible realization of the initial state s0

CEs =
{(

m,x,h,d,VH
)
∈ E∞| (9)-(12) hold and s0 = s

}
.

Appendix A.2 presents an example of a competitive equilibrium sequence.

Corollary 1. CEs for all s ∈ S is nonempty.

Proof. See Appendix A.2.
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Corollary 2. CEs for all s ∈ S is compact.

Proof. See Appendix A.4.

Corollary 3. A continuation of a competitive equilibrium with model uncertainty is

a competitive equilibrium with model uncertainty, i.e. if
(
m,x,h,d,VH

)
∈ CEs0 then{

mt, xt, ht, dt, V
H
t+1

}∞
j=t
∈ CEst for all t and all s0, st ∈ S.

Proof. Follows immediately from Proposition 1.

4 Ramsey Problem for a Paternalistic Government:

Towards a Recursive Formulation

I start by formulating and solving the government’s Ramsey problem. Although the

assumption that the government has the ability to commit might be put in question,

studying such environment will be useful for two reasons. First, it will allow us to

describe the notion of a paternalistic government and to characterize the set of equilib-

rium values (both for the government and households) that the government can attain

in this economy with fragile beliefs with commitment. This set of equilibrium values is

interesting as it constitutes a larger set which includes the set of values that could be

delivered when the government chooses sequentially. The discrepancy between these

two sets sheds some light on the severity of the time-inconsistency problem. Second,

as it will become clearer later on, the procedure for solving the Ramsey problem will

constitute a helpful step towards deriving a recursive structure for the credible plans.

I assume first that the government sets its policy once and for all at time zero.

That is, at time zero it chooses the entire infinite sequence of money growth rates

{ht(st)}∞t=0 and commits to it. A benevolent government in this economy would exhibit

households’ preference orderings and, hence, maximize households’ expected utility

under the distorted model given by (1). In the setup, I depart from the assumption of

a benevolent government, and assume instead that the government is paternalistic in

the sense that it cares about households’ utility but under its own beliefs, which are

assumed to be π(st). The assumption of a paternalistic government implies in turn

that the households and the government do not necessarily share the same beliefs when
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evaluating contingent plans for consumption and real balances.7 While the government

believes that the exogenous shock evolves according to the approximating model π(st),

the households act as if the evolution of the shock is governed by π̃(st).

For a given initial shock realization s0 and initial M−1, the Ramsey problem that

the government solves therefore consists of choosing (m,x, h, d) ∈ CEs0 to maximize

households’ expected utility under the approximating model, i.e.,

V G
t = max

(m,x,h,d,VH)

∞∑
t=0

βt
∑
st

πt(s
t)
[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]

s.t. (9) - (12). (13)

I solve the Ramsey problem by formulating it in a recursive fashion. To do so,

I need to adopt a recursive structure for the competitive equilibria. It is key then to

identify any variables that summarize all relevant information about future policies and

future allocations for households’ decisionmaking in the current period. From the Euler

equation (9) one immediately identifies the variables needed. For time t, history st, and

the households’ choice of real balances mt(s
t), I need to know the (discounted) expected

value of money at t + 1, defined by the right hand side of equation (9). The expected

value of money at t+ 1 can be expressed in terms of the value of money for each shock

realization st+1 and the probability distribution households assign to st+1. Following

Kydland and Prescott (1980) and Chang (1998), I designate the value of money as a

pseudo-state variable to track.8 Let µt+1(st+1) denote the equilibrium value of money

at t+ 1 after history st+1,

µt+1

(
st+1

)
≡ u′(f(xt+1

(
st+1

)
, st+1)(ht+1

(
st+1

)
mt+1

(
st+1

)
). (14)

One can view µt+1(st+1) as the “promised” (adjusted) marginal utility of money after

st+1.

The second ingredient needed to compute the expected value of money at t + 1 is

households’ beliefs about st+1. As shown in Hansen and Sargent (2007), households

7This assumption seems to be standard in the incomplete information frameworks. See, for ex-

ample, Cukierman and Meltzer (1986), Lorenzoni (2010). In frameworks where multiple probability

distributions are contemplated, Woodford (2010) and Karantounias (2013) both feature paternalistic

Ramsey planners. In the latter case, however, it is the government that is assumed to have multiplier

preferences while the public uses a unique probability distribution.
8To solve for the Ramsey plan in a dynamic economy with capital accumulation, Marcet and

Marimon (2009) instead use the Lagrange multiplier associated with the Euler equations as a pseudo-

state variable to guarantee that they are satisfied at every point of time.
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want to guard themselves against a worst-case scenario by twisting the approximating

probability model in accordance to distortions dt+1(st+1). Therefore, the future paths

of ht+1(st+1) and mt+1(st+1) influence today’s choice of real money balances mt, not

only through their effect on µt+1(st+1) but also through the impact they have on the

degree of distortion in the beliefs of the representative household, as given by (10).

These probability distortions in equilibrium turn out to be a function of households’

continuation values. Therefore, to construct a recursive representation of the competi-

tive equilibria with model uncertainty one needs to compute households’ utility values

V H(st+1), in addition to µt+1(st+1). Together, these can be thought of as device used

to ensure that we account for the effects of future policies on agents’ behavior in earlier

periods.

Let <2 be the space of all the subsets of R2. Moreover, let Ω : S→ <2 be the value

correspondence such that

Ω (s = s0) =
{(
µs, V

H
s

)
∈ R× R| µs ≡ u′ [f(x0 (s0) , s0)] [x0 (s0) +m0 (s0)] and

V H
s = u (f(x (s0) , s0) + v (m (s0))− βθ log

∑
s1

π (s1|s0) exp
(
−V H

1 (s1)

θ

)
with s0 = s and for some (m,x,h,d,VH) ∈ CEs

}
.

For each initial state realization s, the set Ω(s) is formed by all current (adjusted)

marginal utilities and households’ values that can be delivered in a competitive equi-

librium. Through these two variables, future policies and allocations (m,x,h,d,VH)

influence the choice of m0 for s0 = s. It is straightforward to check that Ω(s) is

nonempty and compact.

Define

Ψ
(
s, µs, V

H
s

)
=
{(

m,x,h,d,VH
)
∈ CEs|µs = u′ [f(x0 (s0) , s0)] [x0 (s0) +m0 (s0)]

and

V H
s = u (f(x (s0) , s0) + v (m (s0))− βθ log

∑
s1

π (s1|s0) exp
(
−V H

1 (s1) /θ
)}
.

Ψ
(
s, µs, V

H
s

)
delivers the competitive equilibrium sequences

(
m,x,h,d,VH

)
associ-

ated with an initial marginal utility µs and an initial lifetime utility for the households

V H
s for initial s0 = s. If we know sets Ω(s) and Ψ

(
s, µs, V

H
s

)
, we could solve the

Ramsey problem for the paternalistic government in (13) for s0 = s in two steps as

follows. First, I solve the Ramsey problem when the current shock realization is s and
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the current marginal utility and households’ value are µs and V H
s , respectively,

V G∗(s, µs, V
H
s ) = max

(m,x,h,d,VH)

∞∑
t=0

βt
∑
st

πt(s
t)
[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]
. (15)

s.t.
(
m,x,h,d,VH

)
∈ Ψ

(
s, µs, V

H
s

)
Let µ = [µ1, µ2, ..., µS] and V H =

[
V H

1 , V H
2 , ..., V H

S

]
be the vectors of state-contingent

marginal utilities and households’ utilities, respectively. Notice that µs ∈ [0, µs] for

some µs, ∀s ∈ S. Also, given that the period payoffs are bounded, it follows that

V H
s ∈

[
V H
s , V

H

s

]
, for some bounds V H

s , V
H

s . The primes are used to denote next-period

values.

The next proposition formulates the Ramsey problem (15) with a recursive structure

that can be solved using dynamic programming techniques.

Proposition 2. V G∗ (s, µs, V H
s

)
satisfies the following Bellman equation

V G
(
s, µs, V

H
s

)
= max

(m,x,h,µ′,V H′)
[u (f (x, s)) + v(m)] + β

∑
s′

π(s′|s)ws′
(
s′, µ′s′ , V

H′
s′
)

(16)

(m,x, h) ∈M× X×Π and
(
µ′s′ , V

H′
s′
)
∈ Ω

(
s′
)

for all s′

µs = u′ [f(x, s)] [x+m] (17)

V H
s = u (f(x, s)) + v (m)− βθ log

∑
s′

π
(
s′|s
)

exp

(
−V H′

s′

θ

)
(18)

−x = m [1− h] (19)

m
{
u′(f(x, s))− v′(m)

}
= β

∑
s′

π(s′|s)
exp

(
−V H′

s′
θ

)
∑

s′ π(s′|s) exp

(
−V H′

s′
θ

)µ′s′ , ≤ if m = m. (20)

Conversely, if a bounded function V G : S × Ω(s) → R satisfies the above Bellman

equation, then it is solution of (15).

Proof. Based on the Bellman principle of optimality, this is a straightforward extension

of Chang (1998), p. 457, and is left to the reader.

In the recursive Ramsey problem given by (16) it is clear to see how when maximizing

its utility in any period t > 0 the government is bounded by its previous-period promises

of marginal utility and households’ value (µ, V H). From the households’ perspective,

these promises were key when choosing real balances at t−1. To maximize their utility,
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the time t − 1 Euler equation has to hold. Under commitment, these promises must

be delivered at t thereby conditioning government’s choice in that period. In this way,

the government guarantees that households’ Euler equation is satisfied in every period.

Through the dynamics of the promised marginal utility and households’ value, which

the government has to manage to deliver in equilibrium, the Ramsey plan exhibits

history dependence. Once we have solved the recursive Ramsey problem, the following

step has to be undertaken

V G∗ (s) = max
(µs,V H

s )∈Ω(s)
V G∗ (s, µs, V H

s

)
. (21)

In contrast with the other periods, there is no promised (µs, V
H
s ) to be delivered in the

first period. Hence, the government is free to choose the initial vector
(
µs, V

H
s

)
.9

Consider first the choice of the Ramsey planner at t = 0. The following Theorem 1

characterizes that choice and compares it with the choice of the Ramsey planner in an

economy where a representative household is assumed to have rational expectations,

as opposed to the fragile beliefs considered here (I will denote the variables in such a

rational-expectations counterpart economy with superscripts RE).

Theorem 1. Consider two economies: one in which the planner’s and households’

beliefs coincide (and are summarized by πt(st+1|st) for all t and all st ) and another

one - presented here - with households who hold fragile beliefs. Then, V G > V G,RE

where V G,RE defines the Ramsey value in the economy with rational expectations.

Proof. See Appendix A.4.

The proof of the above Theorem relies on two steps. First, I prove that the nec-

essary condition for optimality of policy at t = 0 entails setting f ′(x∗0, s0) = 0 in both

economies, i.e. a stationary policy with zero taxes at time 0 which can be achieved with

a zero rate of money growth, h∗0(s0) = 1. But in the economy with fragile beliefs that

constant rate of money growth must be supported by higher real money holdings, i.e.

m∗0(s0) > m∗,RE0 (s0) which results in higher welfare value. The reason why households

with fragile beliefs demand higher real money balances has to do with a precautionary

savings motive induced by the presence of aversion to model misspecification. What

9The fact that
(
µs, V

H
s

)
can be set by the government at time 0 explains why I refer to it as

pseudo-state variables.
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happens beyond t = 0? In both economies, it is desirable to bring the quantity of money

towards the satiation level. Starting with a higher level, the planner in an economy

populated by households with fragile beliefs can afford reducing the supply of money

steadily, at a slower pace than the planner in the RE-counterpart economy, inducing

less tax distortion along the equilibrium deflation path, which results in higher lifetime

welfare.

To fully solve the recursive problem stated in Proposition 2, it is necessary to know

in advance the value correspondence Ω. In what follows I provide a procedure for the

computation of Ω as the largest fixed point of a specific value correspondence operator,

as proposed by Kydland and Prescott (1980).

Let G be the space of all the correspondences Ω, and let Q live in it. Let the operator

B : G → G be defined as follows,

B (Q) (s) =
{(
µs, V

H
s

)
∈ R× R| ∃

(
m,x, h, µ′, V H′) ∈M× X× Π×Q such that

(17)-(20) hold} .

By picking vectors of continuation marginal utilities and households’ values (µ′, V H′)

from Q, the operator B computes the set of current marginal utilities and households’

values (µs, V
H
s ) for each shock realization s that are consistent with the competitive

equilibrium conditions. The operator B is a monotone operator in the sense that

Q(s) ⊆ Q′(s) implies B(Q)(s) ⊆ B(Q′)(s).

The next proposition states that the set in question, Ω(s), is the largest fixed point

of the operator B. Moreover, it states that Ω(s) can be computed by iterating on

the operator B until convergence, given that I start from an initial set Q0(s) that is

sufficiently large.

Let Q0(s) = [0, µs] ×
[
V H
s , V

H

s

]
. Clearly, it satisfies B(Q0)(s) ⊆ Q0(s). Given

the monotonicity property, by applying successively the operator B, we can construct

a decreasing sequence {Qn(s)}∞t=0 for each s ∈ S, where Qn(s) = B (Qn−1) (s). The

limiting sets are given by Q∞(s) = ∩∞n=0Qn(s) for n = 1, 2, ....

Proposition 3.

(i) Q(s) ⊆ B (Q) (s)⇒ B (Q) (s) ⊆ Ω(s)

(ii) Ω(s) = B (Ω) (s)
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(iii) Ω(s) = limn→∞B
∞(Q0)(s).

Proof. Simple extension of the argument in Chang (1998).

Once we have computed Ω, we can solve the recursive Ramsey problem stated in

Proposition (2) which clearly yields a Ramsey plan with a recursive representation.

The resulting Ramsey plan consists of an initial vector (µs, V
H
s ), given by the solution

to (21), and a five-tuple of functions (h, x,m, µ, V H) mapping (s, µs, V
H
s ) into current

period’s (h, x,m), and next period’s state-contingent (µ, V H), respectively,

ht = h
(
st, µt(st), V

H
t (st)

)
xt = x

(
st, µt(st), V

H
t (st)

)
mt = m

(
st, µt(st), V

H
t (st)

)
µt+1 = ψ

(
st, µt(st), V

H
t (st)

)
V H
t+1 = $

(
st, µt(st), V

H
t (st)

)
.

As it turns out, the solution to the Ramsey problem is time-inconsistent. In this

environment, the government would implement a transitory deflationary process along

with a contracting money supply {Mt(s
t)}∞t=0 so as to increase the real money holdings

towards its satiation level, m. To achieve this, it would have to collect tax revenues

to satisfy its balanced budget constraint (8), which at the same time would entail tax

distortions in the form of output costs. At the beginning of time zero, taking prices

{qt(st)}∞t=0 and taxes {xt(st)}∞t=0 as given, the household chooses once and for all her

sequence of real balances {mt(s
t)}∞t=0. If the government was allowed to revisit its policy

at time T > 0, after history st, given households’ choice {mt(s
t)}∞t=0, the government

would find it optimal not to adhere to what the original plan prescribes from then on,

{Mt(s
t|sT )}∞t=T , but to deviate to an alternative {M̃t(s

t|sT )}∞t=T by reducing the money

supply more gradually. These incentives arise from the fact that tax distortions are an

increasing and convex function of tax collections, as indicated in assumption [A6].

5 Sustainable Plans with Model Uncertainty

From now on, I proceed under the assumption that the government cannot commit to

its announced sequence of money supply growth rates. Instead, it will be choosing its

20



policy actions sequentially in each state.10

As originally studied by Calvo (1978) and explained in section 4, in this case the

government faces a credibility problem. To study the optimal credible policies in this

context, we make use of the notion of sustainable plans, developed by Chari and Kehoe

(1990). The notion of a sustainable plan inherits sequential rationality on the gov-

ernment’s side, combined with the fact that households are restricted to choose from

competitive equilibrium allocations.11

In this section, I extend the notion of sustainable plans of Chari and Kehoe (1990)

to incorporate model uncertainty.

Let ht = (h0, h1, ..., ht) be the history of the (inverse) money growth rates in all the

periods up to t. A strategy for the government can be defined as σG ≡ {σGt }∞t=0, with

σG0 : S → Π and σGt : St × Πt−1 → Π for all t > 0. I restrict the government to choose

a strategy σG from the set CEΠ
s , where CEΠ

s is defined as

CEΠ
s =

{
h ∈ Π∞| there is some

(
m,x,d,VH

)
such that

(
m,x,h,d,VH

)
∈ CEs

}
.

CEΠ
s is the set of sequences of money growth rates consistent with the existence of

competitive equilibria, given s0 = s. It is straightforward to establish that this set is

nonempty and compact.

The restriction above is equivalent to forcing the government to choose after any

history ht−1, st a period t money supply growth rate from CEΠ,0
st , where CEΠ,0

s is given

by

CEΠ,0
s = {h ∈ Π : there is h ∈ CEΠ

s with h(0) = h}.

An allocation rule can be defined as α ≡ {αt}∞t=0 such that αt : St×Πt →M×D×X
for all t ≥ 0. The allocation rule α assigns an action vector αt(s

t, ht) = (mt, xt, dt)(s
t, ht)

for current real balances, tax collections, and distortions to households’ beliefs about

the next state st+1.

10We can think instead of this environment as having a sequence of government “administrations”

with the time t, history st administration choosing only at time t, history st government action given

its forecasts of how future administrations will act. The time t, history st administration intends to

maximize the government’s lifetime utility only in that particular node.
11From a game theoretical perspective, the notion of a sustainable plan entails subgame perfection

in a game between a large player (government) and a continuum of atomistic players (households),

who cannot coordinate, and are, thus, price-takers.
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Definition 5.1. A government strategy, σG, and an allocation rule α, are said to

constitute a sustainable plan with model uncertainty (SP) if after any history st and

ht−1

(i) (σG, α) induce a competitive equilibrium sequence;

(ii) given σH , it is optimal for the government to follow the continuation of σG , i.e.

the sequence of continuation future induced by σG maximizes

∞∑
j=t

βj−t
∑
sj |st

πj(s
j|st)

[
u
(
cj
(
sj
))

+ v(mj

(
sj
)
)
]

over the set CEΠ
s .

Condition (i) states that after any history st, ht, even if at some point in the past the

government has disappointed households’ expectations about money growth rates, all

economic agents choose actions consistent with a competitive equilibrium. Condition

(ii) guarantees that the government attains weakly higher lifetime utility after any

history by adhering to σG.

Any sustainable plan with model uncertainty (σG, α) can be factorized after any

history into a current period action profile, a, and a vector (V G′(h), V H′(h), µ′(h)) of

state-contingent continuation values for the government, and for the representative

household, and promised marginal utilities, as a function of money growth rate h. The

action profile a in this context is given by a = (ĥ,m(h), x(h), d′(h)). That is,the action

profile a assigns:

(i) an (inverse) money growth rate ĥ that the government is instructed to follow

(ii) a reaction function m : Π→ [0,m] for the real money holdings chosen by house-

holds. If the government adheres to the plan and executes recommended ĥ, house-

holds respond by acquiring m(ĥ) real balances. Otherwise, if the government

deviates from the sustainable plan and select any h 6= ĥ, households react by

selecting m(h).

(iii) a tax allocation rule x : Π→ X. Taxes revenues are determined in equilibrium as a

residual of money growth and money holdings in order to satisfy the government’s

budget constraint (7).

(iv) a reaction function d : Π→ D for the beliefs’ distortions set by the evil alter ego.
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The vector (V G′(h), V H′(h), µ′(h)) reflects how continuation outcomes are affected

by the current choice h of the government through the effect it has on households’

expectations and thereby on future prices. Given the timing protocol within the period,

households’ response or punishment to a government deviation h 6= ĥ consists of an

action m(h), typically different from m(ĥ), in the same period, followed by subsequent

actions and associated future equilibrium prices, the impact of which is captured by

(V G′(h), V H′(h), µ′(h)).

In this context, the sustainable plans combine two sources of history dependence.

In addition to the one embedded in the dynamics of the marginal utilities, as in the

Ramsey plan, there is a new source of history dependence arising from the restrictions

that a system of households’ expectations impose on the government’s policy actions.

As the government after any history is allowed to revisit its announced policy and reset

it, households expect that the government will adhere to the original plan only if it is

in its own interest to do so.

Let A(s) be given by

A(s) =
{(

m,x,h,d,VH
)
∈ CEs| there is a SP whose outcome is

(
m,x,h,d,VH

)}
.

Let <3 be the space of all the subsets of R3. I define the value correspondence Λ : S −→
R3 as

Λ(s) =
{(
V G
s , V

H
s , µs

)
| there is a

(
m,x,h,d,VH

)
∈ A(s) with

V G
s =

∞∑
t=0

βt
∑
st

πt(s
t)
[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]
,

V H
s =

∞∑
t=0

βt
∑
st

πt(s
t)Dt(s

t)
{[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]

+θβ
∑
st+1

π(st+1|st)dt+1(st+1|st) log dt+1(st+1|st)
}
,

µs = u′ [f(x0 (s0) , s0)] [x0 (s0) +m0 (s0)]
}
.

For each s ∈ S, Λ(s) constitutes the set of vectors of equilibrium values for the govern-

ment and the household, and the promised marginal utilities given state s that can be

delivered by a sustainable plan. I denote as Ĝ the space of all such correspondences.

Definition 5.2. For any correspondence Z ⊂ Ĝ, (a, V G′(·), V H′(·), µ′(·)) is said to be

admissible with respect to Z at state s if
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(i) a = (ĥ,m(h), x(h), d′(h)) ∈ Π× [0,m]Π ×XΠ × RΠ;

(ii) (V G′
s′ (h), V H′

s′ (h), µ′s′(h)) ∈ Z(s′) ∀ h ∈ CEΠ,0
s , s′ ∈ S;

(iii) (19)-(20) are satisfied;

(iv) u(f(x(ĥ), s)) + v(m(ĥ)) + β
∑

s′∈S π(s′|s)V G′
s′ (ĥ) ≥

u(f(x(h), s)) + v(m(h)) + β
∑

s′∈S π(s′|s)V G′
s′ (h) ∀h ∈ CEΠ,0

s .

Condition (i) ensures that a belongs to the appropriate action space. Condition (ii)

guarantees that for any h that the government contemplates the vector of continuation

values and promised marginal utility for next period’s shock s′ belongs to the corre-

sponding set Z(s′). Condition (iii) imposes the competitive equilibrium conditions in

the current period. Finally, condition (iv) describes the incentive constraint for the gov-

ernment in the current period. This incentive constraint deters the government from

taking one-period deviations when contemplating money growth rates h other than pre-

scribed ĥ. If condition (iv) holds, it follows from the “one-period deviation principle”

that there are no profitable deviations at all. A plan is credible if the government finds

it is in its own interest to confirm households’ expectations about its policy action ĥ.

Condition (iv) guarantees that this is the case.

In what follows, I explain how to compute the equilibrium value sets Λ(s). Let

Z ⊂ Ĝ. In the spirit of Abreu, Pearce, and Stacchetti (1990) I construct the operator

B̂ : Ĝ −→ Ĝ as follows

B̂(Z)(s) = co
{

(V G
s , V

H
s , µs)|∃ admissible (a, V G′(·), V H′(·), µ′(·)) with respect to Z at s:

a = (ĥ,m(h), x(h), d′(h))

V G
s = u(f(x(ĥ), s)) + v(m(ĥ)) + β

∑
s′∈S

π(s′|s)V G′
s′ (ĥ)

V H
s = u(f(x(ĥ), s)) + v(m(ĥ))− βθ log

∑
s′∈S

π(s′|s) exp

{
−V

H′
s′ (ĥ)

θ

}
µs = u(f(x(ĥ), s))(x(ĥ) +m(ĥ))

}
.

For each s ∈ S, B̂(Z)(s) is the convex hull of the set of vectors (V G
s , V

H
s , µs) that can be

sustained by some admissible action profile a and vectors (V G′
s , V H′

s , µ′s) of continuation

values and marginal utilities in Z(s′) for each state s′ next period.
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I assume that there exists a public randomization device.12 In particular, I assume

that every period an exogenous, serially uncorrelated public signal X̃t is drawn from

a [0, 1] uniform distribution. Depending on current actions, this signal will determine

which equilibrium will be played next period. While the public is assumed to contem-

plate multiple probability distributions governing the evolution of the s shock, they

know and fully trust the distribution for this public signal.13

The following propositions are simple adaptations of Abreu, Pearce, and Stacchetti

(1990) for repeated games and establish some useful properties of the operator. To-

gether, these properties guarantee that the equilibrium value correspondence Λ is its

largest fixed point and can be found by iterating on this operator.

Proposition 4. Monotonicity: Z ⊆ Z ′ implies B(Z) ⊆ B(Z ′).

Proof. The proof is a simple extension of that in Chang (1998).

Proposition 5. Self-Generation: If Z(s) is bounded and Z(s) ⊆ B(Z)(s), then B(Z)(s) ⊆
Λ(s).

Proof. We need to construct a subgame perfect strategy profile (σG, σH) such that

(i) for each s ∈ S it delivers a lifetime utility value V G
s to the government, V H

s to a

representative household with an associated marginal promised utility µs,

(ii) the associated outcome of the SP satisfies (19)-(20)

(iii) government’s incentive constraint holds for every history (st, ht−1).

To do so, fix an initial state s and consider any (V G
s , V

H
s , µs) ∈ B(Z) (s) . Let (V G

0 , V
H

0 , µ0) =

(V G
s , V

H
s , µs) and define (σG, σH) recursively as follows.

12For other application of public randomization device see, for example, Phelan and Stacchetti

(2001).
13This assumption is akin to stating that some sources of randomness might be better understood

than others, like roulette wheels versus horse races (Anscombe and Aumann (1963)). In the robust

control literature such a distinction is allowed for by the construction with the so-called T1 and T2

operators corresponding to different degrees of aversion towards uncertainty with respect to different

fundamental shocks (see, for example, Boyarchenko (2012), Pouzo and Presno (2016)). For the public

randomization device to be correctly applied in this set-up, it is further important to time it right so

that agents are not able to hedge against model uncertainty / ambiguity by randomizing (see Wolitzky;

I am grateful to Tomasz Strzalecki for pointing me to this reference).

25



Let (V G
t (ht−1, st−1, st), V

H
t (ht−1, st−1, st), µt(h

t−1, st−1, st)) ∈ Z(st) be the vector

of values and marginal utilities after an arbitrary history (ht−1, st−1, st). Since Z ⊂
B(Z), for each s ∈ S there exists an admissible vector (ĥ,m(h), x(h), d′(h), V G′(h),

V H′(h), µ′(h)) with respect to Z at s. Define σGt (ht−1, (st−1, st)) = ĥ and m̂ = m(h).

Let αt(h
t−1, (st−1, st)) = (m(h),m(h)(h− 1), d′(h)) if h ∈ CEΠ,0

st and = (0, 0, d′NM oth-

erwise, where d′NM are the probability distortions corresponding to the nonmonetary

equilibrium.14

Also, define (V G
t+1(ht, st, st+1), V H

t+1(ht, st, st+1), µt+1(ht, st, st+1)) = (V G′
st+1

(h), V H′
st+1

(h),

µ′st+1
(h)) if h ∈ CEΠ,0

st+1
; (V G

t+1(ht, st, st+1), V H
t+1(ht, st, st+1), µt+1(ht, st, st+1)) = (V GNM

st+1
, V HNM

st+1
,

µNMst+1
) otherwise. Clearly, (V G

t+1(ht, st, st+1), V H
t+1(ht, st, st+1), µt+1(ht, st, st+1)) ∈ Z(st+1).

By admissibility, (σG, α) is unimprovable and, thus, is subgame perfect. Since Z(s) is

bounded for every s ∈ S, it is straightforward to show that (σG, α) delivers (V G
s , V

H
s , µs).

Also, admissibility of vectors (ĥ,m(h), x(h), d′(h), V G′(h), V H′(h), µ(h)) ensures that

the equilibrium conditions are satisfied along the equilibrium path.

Proposition 6. Factorization: Λ = B(Λ).

Proof. By the previous proposition, it is sufficient to show that Λ(s) is bounded and

that Λ(s) ⊂ B(Λ)(s). The latter result follows from the fact that the continuation of

a sustainable plan is also a sustainable plan. The boundness of Λ(s) follows from (i)

the fact that any lifetime utility for the government is the expected discounted sum of

one-period bounded payoffs; (ii) any lifetime utility for the household can be bounded

by discounted sums of non-stochastic extremal one-period payoffs, and (iii) marginal

utilities are determined by continuous functions f, u′ over compact sets.

Proposition 7. If Z(s) is compact for each s ∈ S, then so is B(Z)(s).

Proof. Let us show first that B(Z)(s) is bounded. Let Z be a value correspondence in

Ĝ. Define the operators Υi,s : Ĝ −→ R for i = 1, 2, where < is the space of subsets in

R,

Υ1,s(Z) =
{
V G
s : ∃(V G

s , V
H
s , µs) ∈ Z(s)

}
Υ2,s(Z) =

{
V H
s : ∃(V G

s , V
H
s , µs) ∈ Z(s)

}
.

14Even though the continuation outcome in case the government selects h not belonging to CEΠ,0
st

is irrelevant for the solution (since it cannot occur by assumption), to be rigorous we need to specify

the moves after any history. If the government executes h not in CE0
st I assume that the economy

switches to the nonmonetary equilibrium.
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Boundness of B(Z)(s) follows from having

Υ1,s(B(Z)) ⊂ U0
s + β

∑
s′

π(s′|s)Υ1,s′(Z)

Υ2,s(B(Z)) ⊂ U0
s − βθ log

∑
s′

π(s′|s) exp (−Υ2,s′(Z)/θ) ,

where the sets of one-period payoffs U0
s (for current state s), and Υi,s′(Z) for i = 1, 2

are bounded.

Let us show now thatB(Z)(s) is closed. Consider any sequence
{

(V Gn, V Hn, µn)
}+∞
n=1

such that (V Gn
t (st−1, st), V

Hn
t (st−1, st), µ

n
t (st−1, st)) ∈ B(Z)(st) ∀st−1 ∈ St−1, st ∈ S

that converges to some (V G∗, V H∗, µ∗). Fix an arbitrary sequence of states {st}+∞
t=0 . We

need to show that

(V G∗(st−1, st), V
H∗(st−1, st), µ

∗(st−1, st)) ∈ B(Z)(st) ∀st−1 ∈ St, st ∈ S.

For each (V Gn
t (st−1, st), V

Hn
t (st−1, st), µ

n
t (st−1, st)), there exists an admissible vec-

tor (ĥn, mn(h), xn(h), d′n(h), V Gn′(h), V Hn′(h), µn′(h)) with respect to Z at s. This

vector should be indexed by histories of shocks st. In particular, ĥnt (st) = ĥn. Since

{st}+∞
t=0 is fixed, I slightly abuse the notation and refer to ĥnt (st) as just ĥnt . With-

out loss of generality, I assume that ĥnt converges to some ĥ∗t ∈ CEΠ,0
st . In a sim-

ilar way, for each h ∈ CEΠ,0
st , (mn(h), xn(h), d′n(h), V Gn′(h), V Hn′(h), µn′(h)) −→

(m∗(h), x∗(h), d′∗(h), V G′(h)∗, V H′(h)∗,

µ′(h)∗) where (m∗(h), x∗(h), d′∗(h)) ∈ [0,m]× X× D and (V G′
s′ (h)∗, V H′

s′ (h)∗, µ′s′(h)∗) ∈
Z(s′) ∀s′ ∈ S, by compactness of [0,m]×X×D and Z(s′) ∀s′ ∈ S. By the continuity of

functions u, v, f, u′, v′, it is straightforward to check that (m∗(h), x∗(h), d′∗(h), V G′(h)∗, V H′(h)∗, µ′(h)∗)

satisfies conditions (19)-(20). It follows then that (V G∗(st−1, st), V
H∗(st−1, st), µ

∗(st−1, st)) ∈
B(Z)(st).

Orlik and Presno (2013) proceeded to implement the operator B̂ on the computer in

order to compute the equilibrium value correspondence Λ. The computational algorithm

(see Appendix A.5) is based on an outer approximation of the value sets and is a

straightforward adaptation of the approach developed by Judd, Yeltekin, and Conklin

(2003).15

15Several techniques have been applied to find the equilibrium value sets in different environments.

Chang (1998) uses an approach based on the discretization of both the space of actions and the space
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6 Three-Period Model

The above analysis and the numerical analysis in Orlik and Presno (2013) entails char-

acterizing the full set of sustainable equilibria in terms of continuation values and (dis-

torted) marginal utilities associated with some underlying competitive equilibria. The

analysis does not provide the characterization of the actual strategies, allocations and

prices that support these equilibrium values. To shed further light on the dynamics of

the model, and, in particular, on optimal government policies in the presence of uncer-

tainty averse households I develop here a simplified model with three periods, t = 0, 1, 2.

I start the argument by developing a rational-expectations version of this three-period

model as it can be solved analytically. I assume that households are risk-neutral with

respect to consumption risk. The only source of randomness in this economy is an

i.i.d. shock that realizes in the period t = 1 and affects the extent to which a tax x

reduces income. The shock can only take two values s = 1, 2 with probabilities p(s),

respectively. I consider the following functional forms

u(c) = c

v(m) = ψ(m̄− 0.5m2)

f(x, s) = κ− φsx2

g(x) = κ− φx2

where f(x, s) is the income function in period t = 1 given tax x and shock s, and g(x)

is the income function in periods t = 0 and t = 2, with 0 < φ1 < φ2 and φ = φ1+φ2
2

.

Even in this economy with consumption-risk neutral households, the key trade-off for

government policy remains endangering time-consistency of its policies. Inducing a

deflationary process increases welfare by raising real money balances but, on the other

hand, it also pushes up expected tax costs as more tax collections are required to retire

money from circulation in order to reach the satiation level of real money holdings.

The Ramsey problem in this economy when the planner and household have common

of continuation values and promised marginal utilities. This technique suffers from a severe curse of

dimensionality. Instead, the method proposed by Judd, Yeltekin, and Conklin (2003) discretizes only

the action space and by solving optimization problems approximates the value sets in question using

hyperplanes. Also see Fernández-Villaverde and Tsyvinski (2002) for an adaptation of this procedure

to characterize the value sets in a dynamic capital taxation model without commitment.
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belief about the evolution of shock s can be written as

max
(m0,m1(s),m2(s),h0,h1(s),h2(s))

g [m0(h0 − 1)] + v(m0)

+β
∑
s

p(s) {f [m1(s)(h1(s)− 1), s] + v(m1(s)) + βg [m2(s)(h2(s)− 1)] + v(m2(s))}

m0

{
g [m0(h0 − 1)]− v′(m0)

}
≤ β

∑
s

p(s)m1(s)h1(s)

m1

{
f [m1(s)(h1(s)− 1), s]− v′(m1(s))

}
≤ βm2(s)h2(s)

I proceed to solve for the Ramsey plan assuming an interior solution in the first two

periods. From the FOC with respect to h0, either m0 = 0 or g′(x0) = 0. Under a

reasonable parametrization, it will not be the case that the nonmonetary equilibrium

is the Ramsey solution.16 Hence, it has to be the case that g′(x0) = 0, which in

turn implies that x0 = 0, and consequently h0 = 1. Intuitively, the Ramsey planner

will choose the (inverse of) initial money supply growth to minimize the initial tax

distortion, given that h0 influences the households’ payoff but not its intertemporal

Euler conditions with consumption risk-neutral preferences.

By differentiating with respect to h1(s), I find that f ′(x1(s), s) = −λ0 where λ0 is

the lagrange multiplier associated with the Euler equation for period t = 0.17 Two

main results follow from this equilibrium condition. First, since this equality holds for

s = 1, 2, it follows that f ′(x1(1), 1) = f ′(x1(2), 2). Essentially, the government wants

to smooth tax distortions across states in period 1. Given the functional form for f ,

it implies that x1(2) = (φ1/φ2)x1(1). Because φ1 < φ2 and tax costs are quadratic in

revenues x, we have that x1(2) < x1(1) and c1(1) < c1(2). The second implication is

that λ0 > 0 implies that x1(s) are positive, which is consistent with the idea that the

government would want to optimally retire money from circulation, as manifested in

h1(s) > 1.

16Note that if m0 = 0, then for the nonmonetary equilibrium it would also have to be the case that

m1(s) = m2(s) = 0 which is implied by the Euler equation. The nonmonetary competitive equilibrium

typically delivers one of the worst utility values for government and households.
17Taking FOC with respect to m0, I obtain the following expression for the lagrange multiplier λ0

λ0 =
v′(m0)

1− v′(m0)− v′′(m0)m0
.
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Using the fact that f ′(x, s) is the same across states, it is clear from the FOC

with respect to m1(s) that the government would optimally set the same real money

balance in period 1 for both states, i.e. m1(1) = m1(2). Hence, given that x1(s) =

m1(s)(h1(s) − 1) > 0, it follows that 1 < h1(2) < h1(1). A similar argument can be

made to establish that also period-2 allocations (m2(s), h2(s), x2(s)) are the same for

the two states.

Because in period 1 c1(1) < c1(2) while real money balances and continuation values

are equal across states, I conclude that the government’s utility value is higher in s = 2

than in s = 1. This latter endogenously determined “bad” state will be of particular

interest for the evil agent.

To understand how the presence of uncertainty aversion affects optimal policy, sup-

pose now for a moment that the same allocations as described above were chosen by

households when they distrust the approximating model. Given how beliefs distor-

tions, and, hence, the distorted state probabilities are determined in equilibrium (eq.

4), we note that the probabilities will be tilted towards the high-h state in period 1.

Consequently, the marginal benefit in period 0 of carrying into the following period an

additional unit of money balances exceeds its marginal cost (the right-hand side term of

the Euler equation is higher than the left-hand side). The uncertainty averse households

respond by increasing their demand for current money balances raising m0 relative to

expected m1(s). These precautionary savings motives result in higher Ramsey value in

an economy with uncertainty averse households (as shown in the general case above)

because increased savings (in the form of real money holdings) yield direct utility. Given

that in both economies with and without the common beliefs assumption the satiation

level for real money holdings is reached in the last period, the government responds

to the higher demand for real money holdings by uncertainty averse households with a

more gradual deflation process (path for real money holdings) in the economy populated

by households faced with model uncertainty. The presence of households’ robustness

concerns – by resulting in a more gradual path for deflation under Ramsey policy –

diminishes government’s incentive to deviate when choosing sequentially, thereby ef-

fectively alleviating time-consistency problem. It is in that sense that robustness can

substitute for (the lack of) government’s commitment.18

18Of course, for that to be true in a more general case it matters how the government value after

deviating changes with the presence of model uncertainty.
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In a quantitative example with β = 0.7, ψ = 0.01, m̂ = 100, α = 10, p = 0.5,

φ2 = 3φ1 = 0.045, I find that under optimal policy real balances increase from 78.4

in period 0 to 84.9 in period 1 with rational-expectation households (θ = +∞) while

with uncertainty-averse households (θ = 0.5) they rise from 81.3 to 84.9 in expec-

tation.19 The price level drops 11 percent in the former economy and 9 percent in

the latter, respectively, reflecting a more gradual deflationary process with uncertainty

averse households.

7 Extension: Two-Sided Aversion to Model Uncer-

tainty

So far I have considered a framework where the planner has a unique reference model

while the households are faced with model uncertainty and are uncertainty averse. In

what follows, I present an economy in which both the public and the government face

model uncertainty, potentially to a different extent. I endow the government with

multiplier preferences. Let θG be the preference-for-robustness parameter describing

the extent to which the planner is averse to model uncertainty. Then, the Ramsey

problem of uncertainty-averse central banker can be written as

V G,θG

t = max
(m,x,h,d,VH)

min
(DG,dG)

∞∑
t=0

βt
∑
st

π(st)DG
t (st){

[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]

+θGβ
∑
st+1

π(st+1|st)dGt+1(st+1|st) log dGt+1(st+1|st)}

(
m,x,h,d,VH

)
∈ CEs0

DG
t+1(st+1) = dGt+1(st+1|st)DG

t (st)∑
st+1

πt+1(st+1|st)dGt+1(st+1|st) = 1

Solving the minimization problem first, one arrives at the following reformulation

19In contrast with the rational expectation economy, real money balances and tax distortions f ′(x, s)

are not equated any longer across states under the Ramsey plan with uncertainty-averse households.

Real money balances in period 1 are 85.40 and 84.35 in states 1 and 2, respectively.
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of the problem

V G,θG

t = max
(m,x,h,d,VH)

{
u
(
ct
(
st
))

+ v
(
mt

(
st
))
− βθG log

∑
st+1

π (st+1|st) exp

(
−V G,θG

t+1 (st+1)

θ

)}

(
m,x,h,d,VH

)
∈ CEs0

Now, the continuation value of the government is affected by her own aversion to

model uncertainty which has direct consequences for the discussion of time-consistency

of government policies. In this economy, the sustainability of equilibrium outcomes is

affected by the presence of model uncertainty through two channels. The first one comes

from changes in allocations and prices in competitive equilibrium due to uncertainty

aversion on the side of the households, as discussed above. The second new channel

comes from the incentive compatibility constraint of the government which is now af-

fected by his own uncertainty aversion through continuation values. Fragile beliefs on

the side of the planner may help mitigate the time-consistency problem further: by low-

ering relatively more the value associated with the worst punishment to the planner,

planner’s fears about model misspecification can help sustain Ramsey outcome in the

economy with two-sided aversion to model uncertainty.

8 Conclusion

In this paper I examine how the optimal monetary policies should be designed when

the policymaker faces households who cannot form a unique probability model for the

underlying state of the economy.

Expectations of future monetary policies influence households’ choices of real bal-

ances in the current period by affecting the expected value of money in the coming

periods. When households exhibit concerns about model misspecification, the effect

of the government’s policies on the expected value of money is two-fold. Besides their

impact on the value of money for every possible future state of the economy, future

policies directly influence the households’ beliefs about the evolution of exogenous vari-

ables, as households base their decisions on the evaluations of worst-case scenarios.

It then becomes key for the government to factor in the management of households’

expectations when designing monetary policies. Indeed, by internalizing the fact that
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households are faced with model uncertainty, the government is able to mitigate the

time-consistency problem and to sustain higher values of equilibrium welfare. In other

words, robustness to model uncertainty substitutes for commitment.

I provide techniques to fully characterize the sets of all equilibrium outcomes, both

with and without commitment on the government’s side.20 To compute these sets, I

implement a computational algorithm based on outer hyperplane approximation tech-

niques proposed by Judd, Yeltekin, and Conklin (2003). I am able to solve analytically

a simplified three-period version of the model which teaches us about the mechanisms

behind the main result: The fact that households are averse towards model uncertainty

– by exacerbating their precautionary savings motives and demand for real money bal-

ances resulting in a more gradual path for deflation under Ramsey policy – diminishes

government’s incentive to deviate when choosing sequentially, thereby effectively alle-

viating time-consistency problem.

While it is true that the way in which attitudes towards model uncertainty is intro-

duced here, following Hansen and Sargent (2008), brings about a form of pessimistic

expectations (with respect to the reference model), it is essential to remember that the

extent of that pessimism is endogenous to the design of the whole economy.21 As such, I

believe that model uncertainty may play an important role in more general frameworks.

As an example, consider an economy modeled within New Keynesian framework and

subject to a zero-lower bound. In this framework where a certain positive degree of

inflation, rather than deflation, is optimal, worst-case scenarios would be associated

with inflation being too low. When the economy is trapped at the zero-lower bound,

as discussed in Werning (2011), to stimulate the economy the central bank needs to

promise to keep interest rates low for a prolonged period of time. The problem with

such a prescription is –again – that of time-inconsistency: once private inflation expec-

tations have risen, the government has an incentive to renege on its original promise.

But if agents are uncertainty averse in the way described in this paper, pessimistic ex-

20In an alternative procedure of computing equilibrium outcomes, Feng (2015) delivers equilibrium

allocations and prices but relies on assumptions over the equilibrium value correspondence which he

is able to verify only numerically.
21Naturally, one may be interested to see whether such discrepancies between the planner’s and

private agents’ beliefs can be rationalized empirically as well. To that end, a richer class of monetary

models, rather than a stylized model considered here, is needed, and I am currently pursuing this line

of research.
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pectations would actually mean (endogenously) expecting inflation not rising. As such,

the presence of uncertainty averse households may again help the central bank alleviate

its time-consistency problem and stimulate the economy.
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A Appendix

A.1 Characterization of the competitive equilibrium sequence

A.1.1 Solving a representative household’s maximization problem

Given prices {qt(st)}, government policies {ht(st), xt(st)} and belief distortions

{Dt+1 (st+1) , dt+1 (st+1)}∞t=0, the households’ optimization problem consists of choosing

{ct (st) ,Mt (st)}∞t=0 and {λt (st) , µt (st)}∞t=0 to maximize and minimize, respectively, the

Lagrangian

LH =
∞∑
t=0

βt
∑
st

π(st)Dt(s
t)
{[
u
(
ct
(
st
))

+ v(qt
(
st
)
Mt

(
st
)
)
]

+

−λt
(
st
) [
qt
(
st
)
Mt

(
st
)
− yt

(
st
)

+ xt
(
st
)

+ ct
(
st
)
− qt

(
st
)
Mt−1

(
st−1

)]
+

− µt
(
st
) [
qt
(
st
)
Mt

(
st
)
−m

]}
.

Taking FOCs we obtain

u′(ct
(
st
)
) = λt

(
st
)

(22)

Dt(s
t)
[
v′(mt

(
st
)
)qt
(
st
)
− λt

(
st
)
qt
(
st
)]

+

β
∑
st+1

π(st+1|st)λt+1

(
st+1

)
Dt+1(st+1)qt+1

(
st+1

)
−Dt(s

t)µt
(
st
)
qt
(
st
)

= 0. (23)

Substitute equation (22) into (23), use (2) and note that
qt+1(st+1)
qt(st)

=
mt+1(st+1)ht+1(st+1)

mt(st)

v′(mt

(
st
)
)− u′(ct

(
st
)
) + β

∑
st+1

π(st+1|st)
Dt+1(st+1)

Dt(st)
u′(ct+1

(
st+1

)
)
qt+1 (st+1)

qt (st)
≥ 0,

= 0 if mt

(
st
)
< m

mt

(
st
) [
u′(ct

(
st
)
)− v′(mt

(
st
)
)
]

−β
∑
st+1

π(st+1|st)dt+1

(
st+1|st

)
u′(ct+1

(
st+1

)
)mt+1

(
st+1

)
ht+1

(
st+1

)
≤ 0,

= 0 if mt

(
st
)
< m.

The above expression is the equilibrium condition, equation (9).

A.1.2 Solving alter ego’s minimization problem

Given ct(s
t),mt(s

t), the evil alter ego’s optimization problem consists of choosing

{Dt (st) , dt+1(st+1|st)} and {φt+1 (st+1) , ϕt (st)} to minimize and maximize, respec-
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tively, the Lagrangian

LAE =
∞∑
t=0

βt
∑
st

πt(s
t)Dt(s

t){[u(ct) + v(mt)] +

+βθ
∑
st+1

π(st+1|st)dt+1(st+1|st) log dt+1(st+1|st)}+

−β
∑
st+1

π(st+1|st)φt+1

(
st+1

) [
Dt+1(st+1)− dt+1(st+1|st)Dt(s

t)
]

+

−ϕt
(
st
) [∑

st+1

π(st+1|st)dt+1(st+1|st)− 1

]
.

The FOCs for dt+1(st+1|st) and Dt(s
t) are respectively given by

βθDt(s
t) [log dt+1(st+1|st) + 1] + βφt+1

(
st+1

)
Dt(s

t) = ϕt
(
st
)

(24)

[u(ct) + v(mt)] + βθ
∑
st+1

π(st+1|st)dt+1(st+1|st) log dt+1(st+1|st)+

+β
∑
st+1

π(st+1|st)φt+1

(
st+1

)
dt+1(st+1|st) = φt

(
st
)
. (25)

Rearranging (24) leads to

log dt+1(st+1|st) = −1 +
ϕt (st)

βθDt(st)
− φt+1 (st+1)

θ

dt+1(st+1|st) = exp

(
−1 +

ϕt (st)

βθDt(st)

)
exp

(
−φt+1 (st+1)

θ

)
. (26)

By condition (3) it has to be the case that

exp

(
−1 +

ϕt (st)

βθDt(st)

)∑
st+1

π(st+1|st) exp

(
−φt+1 (st+1)

θ

)
= 1

exp

(
−1 +

ϕt (st)

βθDt(st)

)
=

1∑
st+1

π(st+1|st) exp
(
−φt+1(st+1)

θ

) . (27)

Substituting equation (27) back into (26) yields

dt+1(st+1|st) =

exp

(
−φt+1(st+1)

θ

)
∑

st+1
π(st+1|st) exp

(
−φt+1(st+1)

θ

) . (28)

Now we use (24) and impose a respective transversality condition,

lim
t→∞

βt
∑
st+1

π(st+1|st)φt+1

(
st+1

)
dt+1(st+1|st) = 0. (29)
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It follows that

φt
(
st
)

= V H
t

(
st
)
. (30)

Using the above result in equation (28) delivers the equilibrium condition (10)

dt+1(st+1|st) =

exp

(
−V H

t+1(st+1)
θ

)
∑

st+1
π(st+1|st) exp

(
−V H

t+1(st+1)

θ

) .
A.1.3 On the transversality condition

We will show that the transversality condition,

βt
∑

st+1
π(st+1|st)dt+1(st+1|st)u′ [(f(xt (st) , st)]mt (st)ht (st) → 0 as t → ∞ for all t

and all st, is satisfied if (m,x,h,d,VH) ∈ E∞.

Since E is compact, for any (xt (st) ,mt (st) , ht (st) , dt+1(st+1|st)) ∈ E, it must be

that
∑

st+1
π(st+1|st)dt+1(st+1|st)u′ [(f(xt (st) , st)]mt (st)ht (st) belongs to a compact

interval (due to continuity of u′ and f) for every t. Hence, it has to be that∑
st+1

π(st+1|st)dt+1(st+1|st)u′ [(f(xt (st) , st)]mt (st)ht (st) is a bounded sequence, and

the required sequence indeed converges to zero.

A.2 Example of competitive equilibrium sequences

Assume that st = H,L and that the production function is such that f(0, H) = f(0, L).

Set (m,x,h) = {m∗, 0, 1}∞t=0 where m∗ satisfies the following condition for all t and all

st

u′ (f(0, st)) (1− β) = v′ (m∗) .

Then (m,x,h) ∈ CEs.

A.3 Proof of Corollary 3.

CEs for all s ∈ S is compact.

Proof. Fix s0 ∈ S. Let
(
mn,xn,hn,dn,VHn)

be the sequence from CEs=s0 converging

to some sequence
(
m,x,h,d,VH

)
. We need to show that this limiting sequence belongs

to CEs=s0 .

CEs=s0 is a nonempty subset of a compact set E∞. Since E∞ is compact, it is closed,

and, hence,
(
m,x,h,d,VH

)
∈ E∞.
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The fact that
(
mn,xn,hn,dn,VHn) ∈ CEs=s0 implies that equations (9) - (12) are

satisfied for each n. Consequently, by continuity of u, v, u′, v′ and f ,
(
m,x,h,d,VH

)
satisfy these same equations. It follows then from Proposition 1 that

(
m,x,h,d,VH

)
∈

CEs=s0 , which means that CEs=s0 is a closed subset of the compact set. Hence, it is

compact.

A.4 Solving the time-0 Ramsey Problem

Proof. The FOC for the Ramsey problem at time t = 0 boils down to

f ′(x0)(u′(c0)− φ0u
′′(c0)m0) = 0 (31)

where φ0 is a Lagrange multiplier on condition (20). Hence, it must be either that

f ′(x0) = 0 or that u′(c0) = 0 and m0 = 0 hold at the same time (since φ0 > 0 and

u′′(c0) < 0). We will show that the latter condition cannot be simultaneously satisfied.

Notice that m0 = 0 implies that x0 = 0. But then u′(f(x0 = 0)) cannot be equal to

zero.

Next, rewrite condition (20) using the condition (17) as

v′(m0) = u′(f(0, s))−β
∑
s′

π(s′|s)
exp

(
−V H′

s′
θ

)
∑

s′ π(s′|s) exp
(
−V H′

s′
θ

)u′(f(x′, s′))h′, ≤ if m = m.

(32)

where the prime notation refers to t = 1 values.

All else equal, the second - expectation - term on the RHS is lower in the economy with

rational expectations. (Recall that the presence of fragile beliefs manifests itself in a

pessimistic exponential twisting of the likelihood). That is, it must be that v′(m0) >

v′(mRE
0 ), and, hence, m0 > mRE

0 .

A.5 Numerical Algorithm: Outer Hyperplane Approximation
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Table 1: Monotone Outer Hyperplane Approximation

Step 0: Approximate each Z0(s) ⊃ Λ(s).

For each s = 1, ..., S, and gl ∈ G, l = 1, ..., D, compute

c0
l,s = max gl,1V

G
s + gl,2V

H
s + gl,3µs, such that

(V G
s , V

H
s , µs) ∈ Z0(s).

Let C0
s = {c0

1,s, ..., c
0
D,s} for s = 1, ..., S.

Step 1: Given Cks for s = 1, ..., S, update Ck+1
s .

For each s = 1, ..., S, and gl ∈ G, l = 1, ..., D,

(a) For each pair (m,h), solve

P ks (m,h) = min(V G′,V H′ ,µ′) u[f(x, s)] + v(m) + β
∑

s′∈S π(s′|s)V G′
s′ ,

such that m[u′(f(x, s))− v′(m)] = β
∑

s′∈S π(s′|s)d′s′µ′s′ with ≤ if m = m

x = m(h− 1)

gl · (V G′
s′ , V

H′
s′ , µ

′
s′) ≤ ckl,s′ for s′ = 1, ..., S, l = 1, ..., D.

Let P ks (m,h) = +∞ if no (V G′, V H′, µ′) satisfies the constraints.

Let Rks (h) = minm P
k
s (m,h). Let V G

s = maxh∈ΠR
k
s (h).

(b) For each pair (m,h), solve

ck+1
l,s (m,h) = max(V G′,V H′ ,µ′) gl,1V

G
s + gl,2V

H
s + gl,3µs, (P1)

such that V G
s = u[f(x, s)] + v(m) + β

∑
s′∈S π(s′|s)V G′

s′

V H
s = u[f(x, s)] + v(m)− βθ log

∑
s′∈S π(s′|s) exp

{
−V H′

s′ /θ
}

µs = u′[f(x, s)] (m+ x)

m[u′(f(x, s))− v′(m)] = β
∑

s′∈S π(s′|s)d′s′µ′s′ with ≤ if m = m

x = m(h− 1)

d′s′ = exp
{
−V H′

s′ /θ
}
/
∑

s′∈S π(s′|s) exp
{
−V H′

s′ /θ
}

V G
s ≥ V G

s

gl · (V G′
s′ , V

H′
s′ , µ

′
s′) ≤ ckl,s′ for s′ = 1, ..., S, l = 1, ..., D.

where ck+1
l,s (m,h) = −∞ if no (V G′, V H′, µ′) satisfies the constraints.

Let (V G′, V H′ , µ′)l,s(m,h) ∈ RS×3 be the solution to (P1).

(c) For each s = 1, ...S, and l = 1, ..., D, define

ck+1
l,s = max(m,h) c

k+1
l,s (m,h)

(m∗, h∗)l,s= arg max(m,h) c
k+1
l,s (m,h)

Update Ck+1
s as Ck+1

s = {ck+1
1,s , ..., c

k+1
D,s } for s = 1, ..., S

Step 2: Stop if maxl,s |ck+1
l,s − c

k
l,s| < 10−6; otherwise go to Step 1.
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